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APPLICATION OF SPECIAL-PURPOSE DIGITAL COMPUTERS 

TO ROTORCRAFT REAL-TIME SIMULATION 

D. Brian Mackte 
Ames Research Center 

and 

Seth Michelson 
Computer Sciences Corporation 

SUMMARY 

A study was initiated to  determine the suitability of using an array processor as a computa- 
tional element in rotorcraft real-time simulation. It was necessary to  determine whether the speed 
of such a processor would be great enough to  accurately simulate complex rotorcraft. Since 
memory limits on such a computer are quite restrictive, only the rotor portion of the model could 
be array processor resident. The array processor proved fast enough to  execute the rotor code in less 
than 5 msec. Thus, the course of investigation branched into a study of the validity of a 
multilooping scheme, in which the rotor would loop over its calculations a number of times while 
the remainder of the model cycled once on a host computer. To  prove that such a method would 
realistically simulate rotorcraft, a FORTRAN program was constructed to emulate a typical 
host/array processor computing configuration. The multilooping of an expanded rotor model, 
which included appropriate kinematic equations, resulted in an accurate and stable simulation. 

In the course of the study, many programming and operational difficulties were encountered. 
All of these were due t o  a fundamental conflict of concepts between the general-purpose program 
and the special-purpose computer. Some of these problems were mere inconveniences. However, 
several severe problems were also encountered during the development of the array processor 
program. In particular, major manpower effort was required for translation of a FORTRAN model 
into microcode, and logical debug would further require substantial effort. 

INTRODUCTION 

When using a rotating bladeelement method in modeling rotorcraft, an entirely new and more 
complex set of aerodynamic considerations arises than those encountered with fixed-wing aircraft. 
The initial complications arise because the rotor blades induce lift and drag on their surfaces as a 
function of the radial distance from the hub to a point on the blade. The process is further 
complicated by the fact that at any given moment, each blade is encountering a unique set of flight 
conditions. Therefore, each must be considered individually. Finally, high-frequency contents are 
introduced into the entire aircraft model through rotor rotational moments. 



At the Ames Research Center, it has been determined that for a simulation of conventional 
fixed-wing aircraft to be acceptable to  the engineers and research personnel, the integration interval 
(cycle time) should be less than approximately 50 msec. Otherwise, both the motion and visual 
systems will generate granular, unrealistic results, and numerical instabilities can be introduced into 
the dynamical equations. But, because of the inherent complexities involved in rotorcraft simula- 
tions, another aspect of the problem had to be considered. To maintain numerical stability and 
model fidelity for rotating blade-element rotor models the rotor must cycle at approximately 
5 msec (see ref. 1). Because Ames simulation facilities have been structured for fixed-wing aircraft, 
the computational capabilities for handling complex rotorcraft were totally insufficient. 

Recognizing the need for rotorcraft simulation, and recognizing the inadequacies of the 
present simulation environment, this study was undertaken to  determine whether an array processor 
could be used as the dedicated element in a distributed computing system on which the rotor 
portion of the rotorcraft mathematical model could be run. This examination further resulted in the 
study of multilooping techniques which were designed for the parallel processing of the aircraft 
equations with multiple repetitions of the rotor equations. Further, the study was designed to  
investigate not only the technical feasibility of such an approach, but to define the limitations 
encountered when using a special-purpose processor to solve a general-purpose problem. 

PROBLEM DESCRIPTION 

An area of significant interest in real-time simulation at Ames Research Center deals with the 
simulation of complex rotorcraft. The problems arising from rotorcraft simulations are twofold. 
First, the large number of equations contained in rotorcraft models requires large simulation cycle 
times on Ames computers. As noted earlier, previous experience with real-time simulations had 
indicated that cycle times should be under 50 msec. Due to  bandwidth limitations on existing Ames 
computers, it was not possible to achieve this cycle time for complex rotorcraft models. Second, the 
frequency content of the rotating bladeelement rotor model equations requires that cycle times be 
of the order of 5 msec. Because the existing simulation laboratory computers could not meet the 
50-msec cycle time requirements for this model, these further demands could not be met. 

Because of the computer bandwidth limitations, a number of methods have been used in the 
past t o  achieve real-time execution of rotorcraft simulations. The most common methods have been 
t o  degrade the rotor representation and/or the integration interval. A recent study of the applica- 
tion of these methods to a typical rotating blade element model indicated that the rotor cycle time 
should be less than 5 msec (see ref. 1).  Increasing the integration interval beyond 5 msec resulted in 
increasingly incorrect static and dynamic vehicle response as a result of larger rotor blade azimuthal 
advance angle. 

Therefore, it became necessary to  determine how this particular rotor model could be cycled 
in less than 5 msec without degrading the rotor representation. Two possible solutions were 
examined. First, a study was initiated to see if a large, high-speed digital computer could solve this 
type of problem. It was determined that while such a computer could easily meet speed and 
programming requirements, the cost in terms of manpower, time, and money warranted an 
investigation into other possible systems (ref. 2). Concurrently, a second study was undertaken to  
investigate four alternative systems: ( 1) low-cost general-purpose digital computers; (2) analog 
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systems; (3) hybrid systems; and (4) special-purpose digital peripheral computers. Results of this 
second study indicated that a system composed of a special digital peripheral attached to a 
general-purpose host mainframe would be the most effective approach (see ref. 3). 

Having now established the desired approach, a market survey was undertaken to consider the 
set of special-purpose peripherals that could be used for the simulation effort. Specifics of each 
machine were discussed, including manufacturer hardware, software, and support. The results of 
this survey are contained in reference 4. 

The specific problem under consideration in this paper is whether a system consisting of a 
special-purpose digital computer attached to  a host mainframe can accurately simulate complex 
rotorcraft in real-time. Using a representative computer system and rotorcraft model, results of 
array processor programming studies and alternative multilooping configurations are presented. 
Further, limitations of such an approach are assessed. 

TECHNICAL APPROACH 

The technical approach chosen for this study consisted of the following steps. First, it was 
necessary to select a representative computer system. Based on studies cited earlier, it was 
determined that this system should consist of an array processor and an associated host computer. 
The array processor would nominally contain the rotor model plus any other required computations 
or portions of the rotorcraft model which could be easily programmed in microcode. The host 
computer would contain any parts of the rotorcraft model not programmed on the array processor, 
control array processor execution, and provide required interface to the “outside world .’, 

It was also necessary to select a rotorcraft mathematical model to use in the analysis. The 
objective was to choose a model that ( 1  ) was typical of the type Ames Research Center would be 
using in the next 5 years, (2) could be programmed or modified in a reasonable time, and (3)  would 
have readily available static and dynamic checks. 

The next step in the study consisted of programming the representative rotorcraft mathemati- 
cal model for the particular computer system chosen. The goal was (1) to  acquire actual hands-on 
experience with array processor programming techniques, and (2) to  develop a reasonable estimate 
of the expected cycle time. It was expected that this phase of the study would indicate any 
difficulties in this approach from a computer science point of view, and give a general estimate of 
the potential of such a system. 

Finally, it was necessary to  investigate multilooping configurations, in which the high-speed 
array processor would execute all of its code several times during one loop of the slower host 
computer. This effort was directed toward determining whether a stable and sufficiently accurate 
real-time solution to the rotorcraft mathematical model could be obtained using a combination of 
the host computer and multiple loops on the array processor. 
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RESULTS AND DISCUSSION 

System Selection 

As stated earlier, i t  was determined that the most advantageous system considered would be 
one in which a fast peripheral computer was attached to a general-purpose host mainframe. The 
actual system configuration chosen for this study consisted of a Floating Point Systems AP-120B 
attached to an unspecified host mainframe. A short description of the AP-120B can be found in 
appendix A. Because the AI'-1 20B includes a FORTRAN-based emulator, it was possible to program 
the rotor for the array processor and to  obtain cycle time estimates without obtaining the actual 
hardware. The multilooping concept of the host/AP-l20B system was simulated using a FORTRAN 
model of the entire rotorcraft. Using time-scaling techniques on the simulation, several multilooping 
configurations were tested allowing results to  be obtained for host computers of several different 
speeds. 

The hardware and software aspect of both the host computer and the array processor are 
discussed in more detail below. 

Host computer- Because the array processor is a peripheral device, it must be physically 
attached to a host computer. The host computer is a large, general-purpose digital mainframe, which 
is responsible for controlling execution of the array processor and the transfer of its data. In 
addition, the host computer must accommodate all real-time operating software and any portions of 
the rotorcraft model not resident in the array processor. 

The present environment at Ames Flight Simulation Laboratory would likely dictate the 
choice of a host from an already existent set of computers. However, some facilities might require 
the purchase of a new. computer as a host. The specific factors of such a decision are not within the 
scope of this study but some general statements can be made about the kind of host mainframe that 
should be used. 

Primarily, the host mainframe should have enough programmable memory to completely hold 
the modified aircraft model and all real-time support software. Furthermore, i t  should be fast 
enough to execute them in a reasonable time. Secondarily, the computer should be adaptable to the 
present operating environment. Specifically , the real-time support code for the rotorcraft model 
should be of the same form and substance as existing real-time software to maintain facility 
uniformity. If a new machine is to be obtained for use as the host mainframe, both time and effort 
would have to be expended in the development of a compatible real-time operating system. A third 
factor to  consider is that the array processor and the host mainframe be hardware compatible. Some 
array processor manufacturers provide hardware interfaces for a select set of host candidates. 
However, if the machine chosen to be the host is not a member of that set, extra money and 
manpower would have to be allocated for the development of such a piece of equipment. Finally, 
perhaps the most important consideration involved with the host computer is that the data transfer 
and array processor control software run efficiently and quickly. If not, any savings realized by 
implementing the rotor on a fast peripheral computer could be lost in the transfer overhead. 

Array processor- To pursue this line of investigation, one representative, special-purpose 
digital computer was chosen on which to  implement the rotor model. The choice in this case was 
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based primarily on the results of the market survey initiated by Ames Research Center and reported 
in reference 4. 

Some general statements can be made about the kind of special-purpose digital computer that 
might be utilized in a real-time simulation environment. First, it should be large enough to hold the 
rotor model, all associated library and user-written routines, communications software, plus certain 
other short routines to be described later. In cases where available program source memory is 
limited, this consideration is by no  means trivial. Second, the computer should be fast enough to  
execute all of this code in a cycle time short enough t o  produce an accurate real-time solution to 
the rotor model. Various special-purpose digital computers have internal clock cycles in the 6 MHz 
to 40 MHz range. At the lower end of this range, extensive equation sets in the rotor model could 
cause the cycle time to become too long. Third, as noted in the discussion of the host computer, the 
array processor and the host must be hardware compatible. 

Mathematical Model Selection 

Selection of an appropriate rotorcraft mathematical model to  use in this study required that a 
number of factors be taken into consideration. As noted earlier, three criteria which the mathemati- 
cal model should satisfy were: (1 )  applicability to future Ames Research Center simulation studies, 
(2) ease of programming and modification, and (3) availability of checkout data. The rotorcraft 
mathematical model chosen to  perform this study was a preliminary model of the Rotor Systems 
Research Aircraft (RSRA). 

The RSRA is a flying test platform intended for use in the evaluation of advanced rotor and 
control system concepts. It is a complex rotorcraft which can be configured as a helicopter (main 
rotor, tail rotor, and upper horizontal stabilizer), a compound rotorcraft (helicopter plus wings, 
turbo fan engines, and lower horizontal stabilizer), or a fixed-wing aircraft (wings, turbofan engines, 
upper and lower horizon tal stabilizer). The RSRA mathematical model is a total-force, nonlinear, 
large-angle representation in six rigid-body degrees of freedom. The rotor model is a full rotating 
blade-element model with representation of rotor blade flapping, lagging, air mass flow, and hub 
rotational degrees of freedom. 

The RSRA model was selected for use in this study for a number of reasons. First, the RSRA 
is a flying test platform for advanced rotor and control system studies. In preparation for these 
studies, the simulation model will be utilized extensively over the next several years. Second, 
real-time simulation studies of the RSRA have been performed in the past at Ames Research Center. 
Thus, an RSRA simulation program was already in existence and could be easily modified to 
perform this study. Furthermore, the simulation program could be run on the existent simulation 
laboratory system, which included facilities for easy output of static and dynamic check data. 
Finally, a significant amount of previous research had been performed on the RSRA. In particular, 
studies on rotor model degradation (see ref. 1) and simulations using parallel processors (see ref. 5 )  
provided valuable guidelines in the use of the RSRA mathematical model for this study. 
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Array Processor Programming 

Before starting to microcode, the first step in the implementation of the RSRA simulation 
model on the array processor was the creation and debugging of a FORTRAN program of the entire 
model on the host computer. The Ames Research Center simulation laboratories are well equipped 
with both foreground (real-time or timescaled) and background (batch mode) programs to aid the 
simulation engineer in debugging a FORTRAN program. Also, as will be discussed further in a later 
section, the array processor simulator would have required several hours to  complete just one pass 
through the rotor subroutine. Thus, static and dynamic checks required to debug the entire 
simulation, or even that part to  be run on the array processor, would have been unobtainable in a 
reasonable length of time without a FORTRAN version of the model. 

Preparation of the FORTRAN model was done in such a way that the program could be easily 
adapted to  the array-processor system. COMMON blocks were organized such that variables to be 
transferred between the host and the array processor were contained in separate, contiguous blocks. 
This simplified the transmission of variables immensely. In the subroutine which would be 
programmed later on the array processor, calls t o  argument normalization routines for nonlinear 
function table look-ups were placed, where possible, immediately after the calculation of the 
independent variable. Reciprocals of constants allowed some divisions to  be replaced by multiplica- 
tion. Sets of equations which could be written in vector notation were grouped together as much as 
possible. Finally, the subroutine code was carefully optimized to  minimize the number of lines, 
keeping in mind that each FORTRAN line would require an average of seven to eight lines of 
array-processor microcode to implement. 

During the programming of the FORTRAN model it was necessary to determine which groups 
of calculations could be written in vector (or matrix) notation. This would allow efficient use of the 
matrix and vector manipulation library routines provided for the array processor. Grouping these 
equations together allowed sequential calls t o  vector or matrix routines to be combined into one 
call which reduced overhead and increased execution speed. 

. 

Since the array processor program is written on the microcode level without the aid of a 
symbol table builder, it was necessary to  allocate array processor memory prior to writing the 
array processor code. Accessing sequential memory locations is much easier and faster than 
accessing random memory locations. If high-speed data memory is being used, only variables on 
different pages of the interleaved memory may be accessed in sequential clock cycles. Thus, it was 
essential that the address of each variable in memory be allocated before coding began. 

For the RSRA real-time simulation program, memory was allocated so that variables were 
grouped into the following major categories: 

1. Vectors: Typically, vectors had only three components corresponding to  the three rota- 
tional or translational degrees of freedom. 

2. Matrices: Corresponding to  the length of vectors, matrices were typically 3x3 square 
ma trices. 

3. Arrays: Variables that were dimensioned as arrays in the FORTRAN program could be 
most easily accessed if placed in a separate location in memory. 
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4. Data tables: For this application, table data were assumed to  reside in the Main Data 
Memory. If read/write table memory were purchased, table data could be placed in table memory. 
This would require some slight modification to  the present nonlinear function generation routines, 
and would perhaps result in a slight decrease in execution time. 

5. Data table headers: Each data table required a header for use by the nonlinear function 
generation routines. The header was actually composed of one 7-word vector for each independent 
variable associated with the data table. Argument normalization and table look-up procedures on 
the array processor are discussed in appendix B. 

6. Divide space: The iterative Newton-Raphson divide algorithm implemented for this study 
typically requires locations for the storage of the inverse, if it is not explicitly called for in the 
FORTRAN program; this divide algorithm is discussed later in the report and in appendix C. 

7. Constants: Literal values (e.g., constants in equations) must be placed in memory a t  a 
specific location, and accessed by address. Thus, the addressing mode typically referred to  as 
“immediate addressing’’ is not provided. As with data tables, if table memory is purchased, these 
constants could be placed in table memory, resulting in a slight decrease in execution time 
(1 67 nsec decrease per access). 

8. Real variables: For this study, real variables were placed in memory in alphabetical order 
without concern for order of access. For a large simulation program, in which variables are 
randomly accessed at a number of points throughout the program, attempting to arrange variables 
according to order of access is probably not practical. 

9. Integer variables: Because integer variables are treated differently from real variables in the 
program, it was easier to place them in a separate area in memory. 

The above memory organization was by no means optimized to place sequentially accessed 
variables in alternate memory pages, nor was it the only one possible. However, based on the 
authors’ experience it was a workable organization which allowed the program to be written in a 
straightforward manner. 

Once the FORTRAN program had been completely debugged, the equations of vector form 
grouped together, and the array processor memory allocated, the writing of the array processor 
program could begin. To  facilitate debugging of the array processor code, the following procedure 
was followed. Typically, one FORTRAN line was translated into array processor microcode before 
proceeding to the next line. This is not to imply that look-ahead was ignored. Significant savings 
were gained by overlapping some FORTRAN calculations to fill a pipeline or by saving intermediate 
results in scratch pad registers for future reference. As each FORTRAN line was encountered, it was 
written as a comment line above the corresponding section of microcode. Thus, at debug time, it 
would be possible to verify any questionable section of array processor microcode by executing the 
FORTRAN code to the corresponding line and comparing the variable(s) in question. 

To take advantage of the array processor’s speed, i t  was necessary t o  determine at each line of 
code which instructions (e.g., add, multiply, memory fetch) could be performed in parallel and 
which operations could be easily pipelined. Also, because of memory access timing it was neccessary 
to anticipate which variables would be required and fetch them at least three clock cycles in 
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advance of the time they would be needed. These three considerations (paralleling, pipelining, and 
memory access) combined to greatly complicate the programming of the array processor. Without 
careful accounting for each variable throughout the program, the difficulties of programming could 
have become overwhelming. 

On the AP-I20B emulator, any syntax errors in the array-processor code were flagged by the 
assembler at assembly time. Once these errors had been corrected, the modules created by the 
assembler were linked for debugging or for writing into the array processor for execution. 

Timing results for the array processor code could have been obtained in two ways. Using the 
interactive debugger, it would have been possible to  execute the program and obtain timing results 
directly using the breakpoint' capability. However, as will be discussed later, execution of the entire 
program with the debugger would have been an unacceptably time-consuming task. Thus, in this 
case, timing results were obtained by taking into account all executable lines of code and 
multiplying by 167 nsec/line. Memory requirements were obtained directly from the load map 
created by the loader. 

Memory and timing results for the blade-element rotor model programmed for this study are as 
follows: The FORTRAN model consisted of 276 lines of code, requiring 1504 procedure words and 
3898 data words of memory on an XDS Sigma 8 computer. Under the extant operating system, the 
rotor code will execute in approximately 37 msec on the Sigma 8. The equivalent program 
implemented on the FPS AP-120B (based on results using the emulator) would require 2054 words 
of Program Source memory (corresponding to the required procedure words above) and 3 1 16 words 
of Main Data memory (corresponding to  the required data words above). Timing results indicate 
that this code will execute in approximately 4.7 msec on the AP-120B. 

Because the array processor code was not debugged, as discussed later, the results for the 
AP-120B are not absolute. However, even allowing as much as a 10% error in the coding (which 
would correspond to  adding 200 lines of array processor code), the array processor exhibits better 
than a 7-to-1 speed advantage over the Sigma 8 for this mix of instructions. Programming complex- 
ity of the array processor is much greater, though, with each FORTRAN line requiring an average of 
7.4 lines of parallel microcode to  implement. Note also that the 2054 words of Program Source 
memory, which include all library and user subroutines required in the array processor, are slightly 
more than half the available maximum of 4096 words of AP-I 20B program memory. 

Multilooping 

Initially it had been hoped that the majority of the rotorcraft model could be array processor 
resident. However, once the rotor portion had been microcoded, it became apparent that the 
remainder of the rotorcraft model could not be included on the array processor, because the rotor 
code required over half the available program source memory on the array processor. Thus, the 
course of investigation branched into a study of the validity of a multilooping scheme. 

It was not clear at the outset whether separating the rotor from the rest of the aircraft and 
calculating the rotor equations at a smaller cycle time in parallel (i.e., multilooping) would result in 
a reasonable simulation of the entire aircraft. Since multilooping is the basis for the entire 
array processor approach, a FORTRAN simulation was designed from an existent simulation model 
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of the RSRA. The simulation consisted of a variable repetition loop to enclose the “array processor 
code,” a communications routine to simulate a parallel processing communications link, and a pair 
of variable cycle times to simulate real-time multilooping. Various static and dynamic checks were 
then performed on this “host/array processor” system. 

The emulation, with this particular loop structure, allowed the option of choosing the ratio of 
the number of times the rotor would cycle to each cycle of the aircraft code. Since the rotor 
calculations had been estimated to require approximately 5 msec on the array processor, the 
time-scaled aircraft frame time was 5Nmsec, where N is the number of rotor cycles per aircraft 
cycle. Many different values of N were tested so that the results could apply to  a variety of 
hardware configurations. Thus, static and dynamic checks for loop ratios from 1 -to-1 (aircraft frame 
time of 5 msec) to  12-to-1 (aircraft frame time of 60 msec) were carried out for several systems and 
aircraft configurations. The single computer version of the model (i.e., no multilooping) was run at 
5 msec and used as a control case. 

The most significant effects on the aircraft as far as system stability is concerned, will manifest 
themselves in the rotational degrees of freedom, due to  their high-frequency components. Other 
studies indicate (see ref. 1) that because of the relatively small inertial values in the roll axis, the 
model is most sensitive in this degree of freedom. Hence, the aircraft model is more likely to 
become unstable in this critical area than in the pitch or yaw axes. Therefore, inputs that excite the 
roll degree of freedom (lateral cyclic pulses) were used as a worst case approach to testing the model 
stability. 

The total vehicle dynamic response tests were initiated by starting the vehicle at a trim 
condition determined by the simulation model trim routine. At 1 sec into the flight, a 5% lateral 
cyclic pulse was applied for 1 sec. Appropriate variables representing vehicle response were plotted 
by strip-chart recorders for analysis. Of these variables, body roll acceleration (PBD), roll rate (PB), 
roll angle (PHI), and -rotor blade flapping angle (BR) are presented in figures 1-4. 

Figure 1 displays the total vehicle dynamic response with only the rotor on the “array 
processor” and the remainder of the aircraft model on the “host computer.” The responses at loop 
ratios of 1-to-1 and 2-to-1 are indistinguishable from the single computer response. However, at the 
4-to-1 loop ratio, there is a slight high-frequency oscillation in body roll acceleration (PBD). At a 
loop ratio of 6-to-1, the oscillation in PBD is very pronounced and divergent with effects of the 
oscillation appearing in body roll rate (PB). At a loop ratio of 8-to-l , there are divergent oscillations 
in PBD, PB, body roll angle (PHI) and rotor blade flapping angle (BR). The 8-to-1 loop ratio 
represents an aircraft cycle time of 40  msec, which is less than that expected on the Ames host 
mainframe. Thus, the configuration in which just the rotor is array processor resident does not 
represent a feasible method of simulating complex rotorcraft for cases where the host computer 
cycle time is greater than 20 msec. 

In this configuration, the rotor is separated from the body rotational accelerations. Thus, 
dynamic interaction between the rotor and the rotational accelerations can occur only at the end of 
every Nth loop. The magnitude of instability increases as the loop ratio N increases. Because of 
earlier dual processor studies, an alternative configuration is known to reduce instabilities for the 
equivalent of a 1-to-1 loop ratio a t  46 msec (see ref. 5). In this configuration, the body rotational 
equations are included in the rotor loop, thus allowing higher frequency interactions between the 
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rotor and the body rotational degrees of freedom. Extending this concept into a multilooping 
scheme yields the following results. 

Figure 2 represents the total vehicle dynamic response with the rotor and the calculation of 
rotational accelerations and rates on the “array processor” and the remainder of the aircraft model 
on the “host computer.” Again, the responses at loop ratios of l-to-1 and 2-to-1 are indistinguishable 
from the single computer response. At the 4-to-1 loop ratio there is a slight low-frequency 
oscillation in PBD. However, unlike the results from figure 1, the responses a t  6-to-1 and 8-to-1 loop 
ratios are not noticeably different from the response at 4-to-1. Even at loop ratios of 10-to-1 and 
12-to-1, the dynamic response is stable and accurate. I t  should be noted that the rotor blade 
flapping angle (BR) is not as granular as it appears in figure 2. Due to software limitations and 
model simulation procedures, the digital-to-analog signals cannot be output every rotor cycle, but 
only once every aircraft cycle. Results of this experiment indicate that a configuration in which the 
rotor model plus the computation of rotational accelerations and rates are array processor resident 
can provide a sufficiently accurate simulation of compound rotorcraft for cases where the host 
computer cycle time is as great as 60 msec. 

Figure 3 shows the total vehicle dynamic response for an array processor cycle time of 6 msec. 
This case accounts for the effect of increased rotor model complexity. It is possible that a more 
complex rotor model might be required in other rotorcraft simulations, which could result in 
dramatic changes to the stability of the system. A cycle time of 6 msec has been chosen because 
increasing the array processor cycle time from 5 msec to 6 msec would require the addition of 
approximately 6000 executable instructions. Because program source memory limitations on the 
array processor would likely preclude the addition of such a large number of instructions, it is not 
necessary t o  consider cycle times greater than 6 msec. As in the second experiment, the calculation 
of body rotational accelerations and rates is array processor resident. Because the dynamic response 
at 1-to-1 and 2-to-1 loop ratios is indistinguishable from the single computer response, plots of 
those cases have been omitted. Note that again in the response a t  the 4-to-1 loop ratio there is asmall, 
low-frequency oscillation in PBD, and the responses at 6-to-1 and 8-to-1 loop ratios are stable and 
accurate. The response at the 10-to-1 loop ratio, which represents a host computer cycle time of 
60 msec, indicates an accurate dynamic resppnse. Results of this experiment indicate that increased 
rotor model complexity will not adversely affect the dynamic response of the compound rotorcraft 
simulation. 

Figure 4 shows total vehicle dynamic response with the rotorcraft configured as a helicopter 
rather than as a compound rotorcraft. The computations of body rotational accelerations and rates 
is again array processor resident. The dynamic response at I-to-1 and 2-to-1 loop ratios is very 
similar to the single computer response. The response at the 4-to-1 loop ratio exhibits a slight 
low-frequency oscillation in PBD. However, at loop ratios of 640-1 and 8-to-1, this oscillation is 
attenuated and the dynamic response is stable and accurate. This experiment indicates that the 
multiloopling scheme can provide a sufficiently accurate simulation of a helicopter as well as a 

1 compound rotorcraft. 

Further dynamic checks have been performed on both helicopter and compound rotorcraft 
configurations over a range of flight speeds. These dynamic checks have included lateral cyclic 
pulses, as in the above experiments, collective pulses, and longitudinal cyclic pulses. Results of these 
dynamic checks, which are not presented in figures here, indicate that the multilooping scheme in 
which the computations of rotational accelerations and rates are array processor resident can 
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provide a sufficiently stable and accurate real-time simulation of rotorcraft, both compound and 
helicopter. 

Limitations 

When one attempts to  simulate a rotorcraft model in real-time on any computer system, 
certain limitations are t o  be expected. Most of these limitations are overcome by reducing the 
complexity of the computer model, such that approximate accuracy and fidelity are acceptable 
trade-offs for time critical results. However, when the computer system has been specifically 
designed to  handle a different, special class of problem, an additional set of limitations is 
encountered that cannot be overcome by reducing the model complexity. Some of these difficulties 
arise due to  the specific machine chosen for the task. But the overwhelming majority of them are 
the result of conflicts encountered when trying t o  apply a special-purpose computer to an 
application for which it was not designed. 

While using the array processor, some very serious problems were encountered due, primarily, 
to  this general conflict in design philosophy. It is important to remember that the array processor 
was designed for use in small problems with large amounts of vector data. Examples of such 
applications are signal processing and seismic analysis. The rotor model, on the other hand, is a large 
set of differential equations with many scalar variables and a small set of three-component vectors. 

Array processors were designed to  be used in applications in which the typical program is 
rather small, although the data set may be immense. Therefore, the basic hardware configurations 
offered on the array processors feature a very small program source memory space. At first it was 
hoped that an entire simulation could be implemented on the peripheral computer with only 
real-time operating software remaining on the host. But because the AP-120B has a source program 
limit of only 4096 words of memory, the only alternative for this study was the implementation of 
just the rotor model on the array processor. This does not present a serious problem, if the type of 
model will lend itself to  a multilooping scheme. In the case of the RSRA, with certain modifica- 
tions, this was true. However, the small memory size is a severe limitation to the further addition of 
control systems and/or the complication of the model. 

Array processors are designed for applications in which floating point division is not generally 
required. On the AP-120B no  floating divide hardware is built into the unit, but a slow software 
divide is provided instead. However, the rotor model has 84 floating divisions. The slowness of the 
provided software necessitates the adoption of a simpler, though less accurate, algorithm to do 
software divides. This requires the design, implementation, and debugging of another piece of 
software. While there is a possibility that table memory could be purchased to hold the divisor and 
dividend, that would only speed up the algorithm by one instruction per division. The specifics of 
the divide algorithm are discussed in appendix C. 

Because the design philosophy is a t  odds with this application it is not unreasonable to 
conclude that the programming philosophy should also be at odds. The array processor was 
designed such that maximum efficiency could be achieved by writing short, tight loops in which all 
the independent hardware units were being used simultaneously. The efficiency is further increased 
if the data sei can be considered a large vector which is to  be processed by these loops. The rotor 
model used in this study was not formulated in this manner at all. There were few vectors present, 

. 
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and those that did exist were only three elements long. The equations were long and complicated, 
and no short loops could be made from the model. Some of the calculations could be overlapped so 
that the hardware components could be run in parallel, but this situation was not universal. 

The model had some equations that could be written in vector notation, thus making use of 
matrix-vector algorithms. However, this was not true for the vast majority of the model. The scalar 
calculations had to  be done in specific order and, in many cases, the result of one step was 
prerequisite to calculations in the next. While some savings were gained by storing results in a fast 
scratch memory buffer, the theoretical maximum efficiency was unachievable. 

As discussed earlier, it was necessary to allocate array-processor memory prior to coding. This 
memory plan, with conceptual vectors and matrices included, then lent itself to  pipelining of 
memory locations and the processing of data. Typically, a software library of vector functions is 
provided by array processor manufacturers. However, because the vectors encountered in this model 
were so short, the overhead entailed in library utilization made this practice counter-productive in a 
real-time environment. This situation is not a function of any particular machine or software but 
rather, the result of the basic conceptual conflicts encountered in trying t o  apply a special-purpose 
processor to a class of problems for which it was not designed. 

Another problem that became apparent was the large manpower effort required to translate a 
FORTRAN program to  microcode. The efficiency and speed of an array processor can only be 
achieved by coding every clock cycle, causing the translation of any appreciable FORTRAN 
program to  require an incredible manpower effort. As an example, on the given RSRA model, an 
average simulation engineer can completely code the rotor in FORTRAN in about 2 weeks. (Note, 
this is the required time for coding only and does not take into consideration study and preparation 
time needed to  understand the mathematical model. However, that adidtional time would be 
overhead in considering coding effort and is irrelevant t o  this point.) The actual translation time 
needed to microcode the base FORTRAN model was 3 man-months, involving experienced person- 
nel. The work, in addition to  being very slow, was very difficult to  master. Many idiosyncrasies of 
microcode significantly complicated the process of direct translation. 

Problems also arise with respect to  system software due to this conceptual conflict. While the 
exact problems are a function of the particular software, the general class of problems encountered 
is a consequence of the philosophy. Unrealistic limits on symbols and labels result because of the 
assumption that the machine will only be used for small programs. On the AP-120B in particular, no 
limit checks were done on the arrays in the asembler, which handled the user symbols, thus giving 
rise to  spurious and misleading error messages. Further assumptions were made in the emulator with 
respect to the particular hardware configuration (memory size and speed) of the array processor 
being simulated. These required a great deal of work to  correct in both the linker and the emulator. 
The additional time required to  first define, and eventually fix, these problems was very costly to  
the program development effort. These problems are the direct consequences of the assumptions 
made concerning applications of the machine. 

The problems with software increased during debug time. At Ames flight simulation facilities, 
real-time foreground work is being done in parallel with nontime-critical software development in 
background. Because the simulator was designed to mimic a small array processor configuration, no  
initial problems arose with its use. However, once the rotor code was translated only a large array 
processor would accommodate it. The simulator program grew by a factor of about 3.5, from 15.6K 
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to 56.6K, putting the background software development process in conflict with the real-time user. 
The majority of the time slice allocated to the background user was spent in paging the program 
into and out  of working core. The result was that the emulation of 38.5 psec of code required 
40 clock minutes. At this rate, i t  would have taken approximately 8 2  hr  to complete one emulator 
pass through the rotor code in background on the Ames simulation computer. 

The consequences of such a situation would mean that program debugging would require 
foreground status and thus, scheduling and system software support, or, alternatively, a dedicated 
computer, to avoid swapping and paging. Besides these problems, the debugging of the microcode is 
a very slow and arduous process. A period of 6-8 weeks for debugging the array processor rotor 
model would be a reasonable estimate. Therefore, any simulation would require dedicated fore- 
ground computer time for at least 2 months prior to its scheduled execution date. 

CONCLUSIONS 

This study was designed t o  investigate the feasibility of employing a relatively fast peripheral 
computer on which the rotor portion of  a real-time rotorcraft model could be executed. The overall 
investigation branched into three subareas, each being fundamental to the feasibility of this 
approach. First, it was necessary to determine array processor speed factors. Second, the numerical 
feasibility of multilooping as a simulation method had to be tested. And third, the practical 
limitations encountered due to  incorporation of a special-purpose digital processor into the general 
simulation environment had to be defined and evaluated. 

The key points of interest seemed to separate into two natural categories. The first is the 
feasibility of the scheme with respect to the simulation environment, and the second is the 
feasibility of all the computer science aspects of the method. While in an actual operating 
environment the ultimate effects are totally interrelated, a study such as this, by its very structure, 
distinguishes between them. 

The most important point concerning the feasibility of simulating rotorcraft in this manner is 
that, because the array processor can cycle the rotor in under 5 msec (a factor of 7 speedup over the 
present Ames’ simulation computer) the multiloop method, with suitable rotor support code, 
successfully achieves the degree of accuracy and stability needed to  make this a workable approach. 
While it was shown that the software configuration which separates only the rotor from the 
remaining aircraft grew unstable at such small loop ratios as 6-to-1, the addition of body rotational 
acceleration and rate equations to  the high frequency component returned the system to stability. 
Not only did it become stable, but the system exhibited remarkably accurate results at such high 
loop ratios as 12-to-1. As a simulation tool, the niultilooping method for rotorcraft is quite 
valuable. 

However, new aspects of the problem present themselves when the issue of practicality is 
considered. There are many problems encountered in the area of computer science that are due 
entircly to the conceptual conflicts encountered between the special-purpose computer and the 
general-purpose problem. Some of these limitations can be overcome with a minimum of difficulty. 
They include the small number of symbols allowed by the initial emulator and the lack of a 
hardware divide. Though they result in some inconvenience, there are methods for circumventing 
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them. However, the software development aspect of the problem is quite a different matter. The 
need for an original FORTRAN model as a basis for translation to microcode can require an extra 
development effort, separate from the array processor coding. The actual translation process is a 
very slow and arduous one. Major manpower efforts are required of skilled programmers to translate 
the initial FORTRAN model into microcode. Not only is the effort considerably greater than that 
usually required in writing a FORTRAN model for the given specifications, but the degree of talent 
available to do the work could very well be the determining factor in the success of such an 
approach. Furthermore, once the model is microcoded, significant problems may be encountered 
during logical debug. Even if the emulator/debugger process is given foreground status, and it is 
possible that it may require total stand-alone capability, the debugging of such a lower level 
language will require an extensive amount of time since it is known to be much more difficult t o  
debug than FORTRAN. 

In conclusion, a special-purpose digital computer can be utilized as a relatively low-hardware- 
cost, high-speed computational element in rotorcraft real-time simulation. Given a rotor model that 
requires a short cycle time, an array processor can provide the necessary computing bandwidth for 
dynamic stability. With the addition of appropriate kinematic equations to  the array processor, the 
entire rotorcraft model can be accurately simulated using a multilooping scheme with a slower host 
computer. Given the limitations discussed above, it should be realized that only a limited class of 
rotorcraft models can be simulated, that the development of the simulation would require major 
manpower efforts, and that changes to  the simulation model could require extensive implementa- 
tion time. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, California 94035, February 22, 1978 
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APPENDIX A 

AP-120B DESCRIPTION 

Hardware 

The specific array processor chosen to perform this study is the Floating Point Systems 
AP-120B. The AP-120B is a high-speed (1 67-nsec cycle time) peripheral floating point arithmetic 
array processor, intended t o  operate in parallel with a host computer. Figure 5 is a general block 
diagram of the system elements and arithmetic paths, including a possible interconnection to the 
host computer. 

The system elements are interconnected with multiple, parallel arithmetic paths so that data 
transfers may occur simultaneously. All internal floating point data paths are 38-bits wide (1 0-bit 
biased exponent plus 28-bit mantissa). The interface unit is available for specific host computers 
and allows either 1/0 or DMA channels to  be utilized for data transfer. Format conversion during 
data transfers is performed automatically in the interface unit. 

Operation of the unit is controlled by the execution of 64-bit instruction words residing in 
Program Source Memory. Program Source Memory is available in 256-word modules up to  a 
maximum of 4 K  words. Integer arithmetic and control functions, such as address indexing and loop 
counting are provided by the S-Pad unit. The S-Pad consists of sixteen 16-bit registers and an integer 
arithmetic logic unit (ALU). 

Main Data Memory is the primary data storage unit for the AP-120B. It is available with 38-bit 
words, in 8 K  modules, up to a maximum of 1 million words. Memory operations may be performed 
every 167 nsec on alternate pages of interleaved memory. However, data “read” from memory are 
not available in the memory data register until 500 nsec (3  clock cycles) after the read operation is 
executed. 

Table Memory is used to store constants and table data for look-up. It is available in 38-bit 
word, 5 12-word modules up to a 65K word maximum. Table memory “reads” may be performed 
every 167 nsec, and data are available 333 nsec after the read operation. The Data Pad Unit consists 
of two blocks, each with 32 floating point accumulators. One register may be read and one register 
may be written in each block in one instruction cycle. The registers are used primarily to store 
intermediate results for immediate access. 

The Floating Point Adder performs addition, subtraction, floating logical, and other floating 
point operations on the contents of the adder input registers, A1 and A2. The operations are 
performed in two stages, each requiring 167 nsec. Since the two stages are independent, a new 
operation may be initiated every machine cycle, with the results being available 333 nsec later. A 
function such as this, in which the operation may be initiated every clock cycle, but goes through 
two or more stages before completion is known as “pipelining.” 

The Floating Multiplier computes the product of the contents of  the two multiplier input 
registers. The operation is performed in three stages, each requiring 167 nsec. Since the three stages 
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are independent, a new multiply may be initiated every machine cycle, with the results being 
available 500 nsec later. Floating multiplies and floating adds may be performed simultaneously. 

A more complete description of the hardware elements of the AP-I20B may be obtained from 
reference 6. 

Software 

Software packages available with the AP-120B may be categorized as follows: 

1. Executive Routines 
2. Mathematical Library 
3. Program Development Package 
4. Testing Programs 

The AP executive program accommodates communication of the host with the AP-120B via a 
series of FORTRAN or machine language subroutine calls. The executive driver routine interprets 
the particular user subroutine call and directs the AP-120B to  perform the desired task. 

The AP Math Library includes 70 subroutines written in AP-120B assembly language and 
callable either from the host computer, using APEX, or  the AP user program. Most of the 
subroutines are intended primarily for signal processing applications and are not useful for 
simulation applications. However, the library does include computations of trigonometric functions 
and vector manipulations that are applicable to this program. 

The Program Development Package is composed of four FORTRAN programs which are 
compiled on the host computer. These four programs are the assembler, linker, debugger, and 
simulator. The assembler provides a two-pass assembly of user symbolic microcode into an object 
module, and generates error diagnostics if necessary. The linker links and relocates APAL object 
modules together into a single executable load module. The debugger is an interactive debugging 
program which runs on the host computer. I t  allows the user to  set breakpoints, examine and 
change memory and register contents, and execute selected segments of the program. The simulator 
is called by APDBUG. These two programs provide an emulation of the AP-I20B. All timing 
characteristics are evaluated, and floating point arithmetic is simulated. Thus, a user can write, 
assemble, link, run, and debug a new AP program totally off-line without interfering with AP 
operations. 

The testing program consists of a collection of interactive diagnostic tests and verification 
programs which aid in hardware maintenance. These include tests of interfaces, registers, arithmetic 
units, and entire system operations. 
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APPENDIX B 

ARGUMENT NORMALIZATION AND TABLE LOOK-UP 

This appendix contains a short description of the algorithms used in the nonlinear function 
generation routines on the FPS AP-120B. Timing results are given for argument normalization and 
for one- and two-dimensional table look-ups. 

Function tables have long been used in real-time aircraft simulation. Because some variables 
result from empirical testing or  statistical analysis, they defy adequate mathematical formulation. 
Therefore, the large data tables and the concomitant software needed to  process them, have to be 
developed as reasonable alternatives. Among the software needed by simulation engineers are 
programs for argument normalization and table look-up. Since the tables consist of argument 
breakpoints and associated function data values which are discrete entities, the arguments calcu- 
lated in the program must be normalized. In this process, it is determined between which 
breakpoint table entries the argument falls, and the ratio of the difference between them. The table 
look-up routine uses this information to interpolate a value from the given data set. 

When using breakpoints with equally spaced intervals, the normalization algorithm is rather 
straightforward. Assume a set of breakpoints x o , x I , .  . . , x ,  such that xk+l - xk  = d ,  for 
k = 0, . . . , n- 1. Prior to  execution time, it is, therefore, possible to determine the inverse of d.  
Given an argument x ,  the normalization algorithm proceeds as follows. The argument is initially 
checked for size. If x < x o  [or x Z x , ]  the first '(or last) breakpoint is assigned. Otherwise, x o  is 
subtracted from x and the result is multiplied by the inverse of d. The integer part of the result is 
the breakpoint index, i, and the fractional part is the interpolatory ratio, Y. 

The look-up process is just as straightforward. It is merely a linear interpolation algorithm in 
one, two, or more dimensions. In one dimension, the equation for interpolation is: 

In two dimensions, the look-up process proceeds as if two separate one-dimensional look-ups were 
used to determine two function values for a third one-dimensional look-up. For example, we are 
given a function of the form f ( x , y )  with x varying faster than y in the table. Thus, for each y 
breakpoint, an array of x breakpoints exists. For simplicity, assume that the normalization routine 
has determined that for a specific argument ( X J )  the breakpoint index in each dimension is 1, with 
associated interpolatory ratios rX and Y ~ .  The first two interpolations are: 

These interpolations yield the two points indicated by A in figure 6. Using these two points for 
a linear interpolation yields: 
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This final value forf(x,y) is indicated by the asterisk in figure 6. 

During coding for the array processor, much of these processes are overlapped to  take 
advantage of the pipelining feature. However, some modification of the present Ames algorithm was 
made as to  the manner in which the breakpoint information is communicated from the normaliza- 
tion routine to the look-up programs. While the processes on the array processor and general- 
purpose computers are analogous, more information, such as the number of x breakpoints per y ,  
and the reciprocal of the interval size, is needed on the array processor. The data table header is also 
stored in its own memory locations rather than as part of the function table. 

The programs were designed, written, and tested on the array processor emulator. The time 
required to  normalize an argument and do a look-up in both one and two dimensions is a function 
of the arguments being noimalized. If the argument is less than the lower limit of the breakpoint 
table, normalization requires 2 psec. If it is greater than the upper limit of the breakpoint table, the 
process requires 2.833 psec. If it lies between the limits, normalization requires 3.833 psec. Look-up 
speed, on the other hand, is independent of the arguments used. One-dimensional look-up requires 
3.167 psec, and two-dimensional look-ups require 6.66 psec. This represents a factor of 7 speed up, 
in the worst case, over the XDS SIGMA 8. 
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APPENDIX C 

ITERATIVE DIVIDE ALGORITHM 

The Newton Method 

The application of iterative algorithms to  the solution of systems of equations is an area of 
extensive study. The Newton method (or Newton-Raphson’s method) is one such algorithm which 
proves to  be very useful in digital solutions to  certain functions. 

Since this algorithm has been so widely studied (see refs. 7 and 8) a much simplified discussion 
of the method will suffice here. The Newton method is defined as follows: Given: f ( x )  = O , f ( x )  is 
continuously differentiable with first derivative f ( x ) ,  and a point xo (first estimate of solution). 

Compute: for n = 0, 1, 2, . . . 

The iterations are concluded when I X , + ~  - xn I has become less than the largest error one is willing 
to  permit in the root. It can be shown that this method is quadratically convergent or that it is a 
second-order method (see ref. 7). 

Application to  Division 

The Newton method can be applied to  the solution of the division problem as follows. First, 
define: 

A f(x) = a - 
1 - 
X 

Setting f(x) = 0, x is the inverse of a. Note that f(x) is not continuously differentiable about x = 0. 
Because the inverse of x is not defined about x = 0, we will not be concerned with that case. 
Differentiatingf(x) from equation (C2): 

1 

f‘(x) = -‘1- (C3 1 
X 

Now, substituting f ( x n )  and f ’ ( x , ) ,  equations (C2) and (C3), into the iteration formula (Cl),  we 
obtain: 

Xn+1 =x,[2 - a x , ]  (C4) 

Thus, an iterative solution to a quotient can be obtained by performing two multiplies and a 
subtract. 
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Application to Real-Time Simulation 

For a real-time simulation on a special-purpose digital computer, i t  is possible to apply this 
algorithm as follows. First, the usual procedure in a real-time simulation is to  define several 
“modes” of operation, two of  which are I.C. (Initial Conditions - sometimes called “reset”) and 
operate. In I.C., certain initial values on variables, integrators, filter, etc., are computed or input and 
the computer execution is not time-dependent. In operate mode all integrators, filters, and 
differential equations are executed with the requirement that the computer execution be completed 
within the specified integration interval. For the Newton method, therefore, since I.C. mode is 
time-independent, it is possible to  compute the true reciprocal in I.C. Thus, at the moment the 
simulation goes into operate mode, a perfect or near-perfect first estimate of the solution is 
available. 

It is necessary to  modify the algorithm in equation (C4) slightly because we are trying t o  
determine the inverse in real time of a dynamically varying quantity. Thus, equation (C4) becomes 

Once the simulation is in operate mode at a given cycle time (integration interval) of At ,  assuming 
the At is sufficiently small and a(t)  is smooth, the first estimate for the solution in a given cycle can 
be obtained from the solution in the preceeding cycle. Thus: 

Since this method is being implemented to provide a fast solution to the inverse of a, it will often 
be implemented using only one iteration per cycle. Substituting equation (C6) into equation (C5) 
yields, for one iteration per cycle: 

~ ( t )  =x(t  - At)[2 - a(t)x(t - At)] (C7) 

Experimental Results 

The single-iteration, modified Newton-Raphson divide algorithm given by equation (C7) can be 
tested using a simple program on a digital computer. Because this algorithm is intended to  be 
implemented on a blade-element rotor model, tests can be performed using a simplified version of 
the model. Two inverses that are required for the model are 1 /cos p and 1 / VT, where p is the blade 
flapping angle and VT is the blade element tangential velocity with respect to  the wind. 

The following simplifying assumptions can be made: 

1.  Flapping, 0, is sinusoidal with maximum excursions of k 1 5”. 

2. Computer cycle time, At ,  is 5 msec. 

3. Tangential velocity, VT, is determined by rotor angular rate, a, and forward velocity, V ,  of 
the aircraft. For this example, VT will be determined at the blade tip. 
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4. Rotor radius, R,  is 9.75 m (32 ft) and rotor angular rate, a, is 21.29 rad/sec. 

Based on these simplifying assumptions, the equations for cos p and VT are as follows: 

cos p = cos[ 15 cos \k] (C8) 

where blade azimuth angle, q, is: 

?k = n A t  - n , n = 1 , 2 , . .  

Using equations (C8) and (C9), a program can be written to compute the exact inverse of 
cos p and VT, compute a single iteration inverse using equation (C7), and determine the percent 

error between the exact and iterative inverses. Results of this study indicate that the percent error is 
strongly dependent on the magnitude of the change in the variable from one cycle to the next. 

In summary, the results are as follows: Over one complete revolution of the rotor, cos ranges 
between 0.966 and 1 .O. The maximum percent error for the inverse of cos p is 0.001 5% using the 
single-itera tion inverse. 

Figure 7 is a plot of VT and percent error in the single iteration computation of l / V T  as a 
function of blade azimuth angle \k for the 1 13 m/sec (220 knot) case. At this airspeed, the value of 
VT ranges between 95  m/sec (310 ft/sec) and 321 m/sec (1052 ft/sec). Maximum percent error for 
the single-iteration inverse is 0.51 03%. Note from'figure 7 that whereas VT is sinusoidal, the percent 
error for the single-iteration inverse is cyclic but not sinusoidal. As expected, the percent error is a 
minimum where VT is most slowly varying from one cycle t o  the next (or where the slope of VT is 
closest to zero). 

For the 62 m/sec (120 knot) case, VT ranges between 146 m/sec (478 ft/sec) and 269 m/sec 
(884 ft/sec). Maximum percent error for the single-iteration inverse is 0.1 134% for this case. 
Comparing these results with the previous case, it is apparent that the maximum percent error is 
strongly dependent on the magnitude of the change in the variable. 

Depending on required accuracy, these errors may or may not be acceptable. If there is a 
requirement for greater accuracy, equation (C5) can be implemented to perform more than one 
iteration per cycle and increase accuracy to the desired tolerance. 
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Figure 1.- Effect of increasing loop ratios on dynamic response of a conipound rotorcraft a t  
220 knots. Rotor At = 5 msec. Computation of rotational rates and accelerations on host 
computer. 
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220 knots. Rotor At = 5 msec. Computation of rotational rates and accelerations on array 
processor. 
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Figure 3.- Effect of increasing loop ratios on dynamic response of a compound rotorcraft at  
220 knots. Rotor Ar = 6 msec. Computation of rotational rates and accelerations on array 
processor. 
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At = 5 msec. Computation of rotational rates and accelerations on array processor. 
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